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Abstract. There have been many studies of the linear response ac conductance of a double-
barrier resonant tunnelling structure. While these studies are important, they fail to self-
consistently include the effect of time-dependent charge density in the well. In this paper,
we calculate the ac conductance by including the effect of time-dependent charge density in the
well in a self-consistent manner. The charge density in the well contributes to both the flow of
displacement currents and the time-dependent potential in the well. We find that including these
effects can make a significant difference to the ac conductance, and that the total ac current
is not equal to the average of non-self-consistently calculated conduction currents in the two
contacts, an assumption often made. This is illustrated by comparing the results obtained with
and without the effect of the time-dependent charge density included properly.

1. Introduction

Double-barrier resonant tunnelling structures (DBRTS) have been of great interest because
of possible device applications in building logic circuits, oscillators, detectors etc, and they
have much to offer in the study of the physics of confined structures. The dc characteristics
have been studied extensively by including the effects of charging and inelastic scattering.
Reference [1] offers a comprehensive review of applications and the basic physics of
DBRTS. In contrast, there are only a few studies of the ac response over various frequency
regimes [2–7]. While some of these studies are based on simulating a realistic device
using detailed numerical procedures [2, 3], others are based on simple models [4–7]. These
calculations however do not include the effect of time-varying charge density in the well,
which is important in determining ac conductance [3, 4, 8–10]. While reference [8] has
discussed the pitfalls of many existing ac conductance theories qualitatively, reference [9]
formulated the theory of ac conductance in the linear response and low-frequency regime
as applicable to mesoscopic structures by including the effects of charging. Subsequently,
reference [12] used a non-equilibrium Green’s function approach to provide a formulation
that can be used at finite biases and large frequencies including effects of charging in the
well and phonon scattering [13]. The effect of time-dependent charge density in the well
is of importance in determining the dynamics, because electrons in the well image to the
outside world, which includes the contacts. This causes the flow of displacement currents
and contributes to the ac potential in the well. The role of these factors in determining the
ac conductance of a DBRTS is not clear from previous work. In this paper, we study the
ac conductance of a DBRTS with the aim of illustrating the role of imaging of well charge
to contacts via a simple model. Imaging of well charge to the two contacts is modelled
by capacitances denoted byC1 andC2 (figure 1). We would like to clarify at the outset
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(c)
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Figure 1. (a) The band structure of a DBRTS. (b) The DBRTS is modelled by the tight-binding
Hamiltonian. (c) Imaging of charge from the well to the contacts is accounted for by capacitive
coupling between the well and the contacts via capacitancesC1 andC2.

that the purpose of this study is to illustrate the importance of imaging and not to model a
typical resonant tunnelling device, whose structure is considerably more complicated.

We derive useful expressions for the ac conductance and show that the ac conduct-
ance depends significantly on both (i) the ratio of capacitancesC1/C andC2/C, where
C = C1+C2, and (ii) the value of the total capacitance between the well and the contacts.
The first feature follows because a time-dependent well chargeq(t) contributes to a flow of
displacement currents equal to

C1

C

dq(t)

dt
and

C2

C

dq(t)

dt

in contacts 1 and 2 respectively (figure 1), whereq(t) is the charge in the well at timet .
The second feature can be understood by noting that the time-dependent charge density in
the well contributes to ac potential of the well via a termq(t)/C (figure 1). This affects the
current because the ac potential in the well plays a role in determining both the conduction
and displacement currents. Note that there is nothing quantum mechanical about these two
features, and they would still arise even ifC1 andC2 were leaky capacitors in a classical
circuit. Quantum mechanics plays a role only in determining the values ofq(t) and the
current.

Some previous papers calculated the ac conductance of a DBRTS by the following
procedure (see section 3). The conduction currents across the two barriers are calculated
by neglecting the contribution to the ac potential in the well from the time-dependent
charge density. Then the total ac current is taken to be the average of the conduction
currents flowing across the two barriers.We find such a procedure to be valid only when the
capacitances are symmetrical (C1 = C2) and the value ofC is large.

The remainder of the paper is arranged as follows. In section 2, we have explained the
model adopted in detail. In section 3, we discuss the effect of charging on the ac conductance
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using expressions derived in section 2.2. In section 4, we discuss the effect of charging on
the ac conductance using numerical examples. The effect of including asymmetries in the
barrier strengths and the capacitances of an otherwise symmetric structure are systematically
studied here. We present our conclusions in section 5.

2. The model

2.1. The Hamiltonian

We model the resonant tunnelling structure using a tight-binding Hamiltonian [4–7, 14, 15].
The well is represented by a single node with a resonant level at energyεr and is coupled
to contacts 1 and 2 (figure 1). The Hamiltonian of the structure is

H = HD +HC +HCD (2.1)

where

HD = εr(t)d†d
HC =

∑
i,α∈1,2

(εiα + evac1 cos(ωt)δ1,α)c
†
iαciα + (wc†iαci+1α + C·C)

HCD =
∑
α∈1,2

wαc
†
0αd + C·C.

We assume that the ac potential is applied only to contact 1.d (d†) and ciα (c†iα) are
annihilation (creation) operators for electrons in the well and various lattice sites of contact
α respectively. The sites in a contact are labelled starting from 0 which represents the
lattice site immediately neighbouring the well.w1 andw2 represent the coupling between
the well and site 0 of contacts 1 and 2 respectively.w represents the coupling between
nearest neighbours in the tight-binding lattice of the contacts.HD, HC andHCD represent
the Hamiltonians of the isolated well, contacts and coupling between the well and contacts
respectively. In the presence of a dc biasV dcα applied to contactα, the on-site potential in
contactα increases by the dc bias (εiα → εiα + eV dcα ). The expression forεr(t) is

εr(t) = εr0+ β2eVdc + α2ev
ac
1 (t)+ eV Qw (t) (2.2)

whereεr0 is the energy of the resonant level at zero dc and ac biases.Vdc andvac1 are dc
and ac biases applied to contact 1.β2 andα2 are fractional drops of the external dc and
ac potentials between contact 2 and the well respectively, in the absence of charge in the
well. The last term of equation (2.2) represents the effect of imaging of charge in the well.
The electrons in the well image to the contacts and this is modelled by capacitancesC1

andC2 (figure 1), which are assumed to be known parameters [9, 14]. As a consequence
of imaging of the well charge, the band bottom in the well (and hence the resonant level)
changes byVQw (t):

VQw (t) =
q(t)

C
= V dcw + vacw (t) (2.3)

where

V dcw =
qdc(V )

C
and vacw (t) =

q(t)− qdc(V )
C

. (2.4)

qdc(V ) represents the dc charge in the well when the applied dc voltage isV . q(t) is the
total charge in the well andq(t) − qdc(V ) is the time-dependent component. The total
capacitance between the well and contacts isC (=C1+ C2).
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The total potential in the well,Vw(t), is

Vw(t) = VQw (t)+ β2Vdc + α2v
ac
1 (t). (2.5)

The first, second and third terms represent the potentials due to imaging of the well charge,
the externally applied dc and ac potentials respectively.

2.2. ac conductance

The applied ac voltage results in a time-dependent well charge that images to the contacts.
This (i) causes a flow of displacement currents and (ii) contributes to the time-dependent
potential of the well (VQw of equation (2.3)). (ii) plays a role in determining the correct
conduction currents. The conduction current is in turn related to the time-varying well
charge by a continuity equation (equation (2.10)).

In the following discussion, we first define a conductance matrix,g. The conduction and
displacement currents are then expressed in terms of the elements of the conductance matrix.
The procedure for evaluating the conductance matrix is discussed in the next subsection.

2.2.1. The conductance matrix (g). The conductance matrix elementgαβ represents the
ratio of the conduction current (icα) flowing in contactα as a result of an ac voltage (vβ)
applied to contactβ, with the ac potential in the well and contacts set equal to zero:

gαβ(ω) = icα(ω)

vacβ (ω)
whereα, β ∈ 1, 2. (2.6)

The dc voltage is set to its steady-state value, i.e., the dc component of equation (2.5).

2.2.2. The conduction current.Consider an ac potentialvac1 applied to contact 1, with
contact 2 grounded. As a result, the potential of the well develops a time-dependent
component,vw(ω) (equation (2.5) [16]). The linear response ac current flowing in contact
i ∈ 1, 2 consists of two terms, (i) due to the ac potentialvac1 , with the ac potentials in the
well and contact 2 set equal to zero, and (ii) due to the ac potentialvw(ω) in the well,
with the ac potential in contacts 1 and 2 set equal to zero. The first component isgi1v

ac
1 .

This follows from the definition in equation (2.6). The second component is physically
equivalent to setting the ac potential in the well equal to zero along with an ac potential
−vw(ω) applied to contacts 1 and 2. The linear response current flowing in contacti due to
this component is−(gi1+ gi2)vw(ω) (from equation (2.6)). The total ac conduction current
flowing in contacts 1 and 2 is the sum of the two components:

ac conduction current in contact 1= g11(ω)(v
ac
1 (ω)− vw(ω))+ g12(ω)(−vw(ω))

ac conduction current in contact 2= g21(ω)(v
ac
1 (ω)− vw(ω))+ g22(ω)(−vw(ω)).

(2.7)

Now, if external ac potentialsvac1 (ω) andvac2 (ω) are applied to both contacts 1 and 2, then
the conduction current in the two contacts is given by

I c1(ω) = g11(ω)(v
ac
1 (ω)− vw(ω))+ g12(ω)(v

ac
2 (ω)− vw(ω)) (2.8)

I c2(ω) = g21(ω)(v
ac
1 (ω)− vw(ω))+ g22(ω)(v

ac
2 (ω)− vw(ω)). (2.9)

The well charge is related to the conduction currents by the continuity equation:

dq(t)

dt
= I c1(t)+ I c2(t)→ q(ω) = I c1(ω)+ I c2(ω)

−iω
. (2.10)
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Substituting equation (2.10) in equation (2.3) and equation (2.5), the ac potential of the
device can be written as

vw(ω) = α2v
ac
1 (ω)+

I c1(ω)+ I c2(ω)
−iωC

. (2.11)

Using equations (2.8), (2.9) and (2.11), the conduction currents in contacts 1 and 2 can be
expressed in terms of theg-matrix elements:

Gc
1(ω) =

I c1(ω)

vac1

= +α1g11− α2g12+ (1/[−iωC])(g11g22− g12g21)

1+ (1/[−iωC])(g11+ g22+ g12+ g21)
(2.12)

Gc
2(ω) =

I c2(ω)

vac1

= −α2g22− α1g21+ (1/[−iωC])(g11g22− g12g21)

1+ (1/[−iωC])(g11+ g22+ g12+ g21)
. (2.13)

Hereα1 andα2 are fractional drops in the externally applied ac potential between the well
and contacts 1 and 2 respectively, in the absence of charge in the well.

2.2.3. The displacement current.The displacement current flowing in contactα consists
of two components. One component,±iωC (the plus and minus signs are for the currents
in the two different contacts), is due to the dielectric nature of the barrier and well. This
component does not depend on tunnelling of charge from the contacts to the well and
is not explicitly written in the remainder of the paper. The other component, which is
due to tunnelling of charge from the contacts to the well, is equal to iωCα/C. The total
displacement currents in the two contacts are given by

I d1 (ω) = iω
C1

C
q(ω) = −C1

C
(I c1(ω)+ I c2(ω)) (2.14)

I d2 (ω) = iω
C2

C
q(ω) = −C2

C
(I c1(ω)+ I c2(ω)). (2.15)

Solving equations (2.8)–(2.15), we get the following expression for the conductance
contributions from the conduction and displacement currents:

Gd
α(ω) =

I dα (ω)

vac1

= Cα

C

α1(g11+ g21)− α2(g22+ g12)

1+ (1/[−iωC])(g11+ g22+ g12+ g21)
(2.16)

where,α = 1, 2 andω has been suppressed in the arguments of theg-matrix elements.

2.2.4. The total current. Using equations (2.14) and (2.15), it can be seen that the total
current (conduction plus displacement) in the contacts can be expressed in terms of the
conduction currents:

I1(ω) = I c1(ω)+ I d1 (ω) =
C2

C
Ic1(ω)−

C1

C
Ic2(ω) (2.17)

and

I2(ω) = I c2(ω)+ I d2 (ω) =
C1

C
Ic2(ω)−

C2

C
Ic1(ω) = −I1(ω). (2.18)

We would like to emphasize thatI c1(ω) andI c2(ω) are the conduction currents calculated by
including the contribution to the ac potential in the well due to the ac well charge density.
In the remainder of the paper it is assumed thatα1 andα2 are equal to fractional drops in
the potentials acrossC1 andC2 (figure 1). Then,α1 = C2/C andα2 = C1/C. Substituting
equations (2.12) and (2.13) in equations (2.17) and (2.18), the total ac conductance is

G1(ω) = +α1
2g11+ α2

2g22− α2α1(g12+ g21)+ (1/[−iωC])(g11g22− g12g21)

1+ (1/[−iωC])(g11+ g22+ g12+ g21)
(2.19)

G2(ω) = −G1(ω). (2.20)
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2.3. Calculation of the conductance matrix elements:gαβ

The general expression for the ac conduction current in contactα taken from reference [12]
is

iα(ω) = e

h̄

∫ +∞
−∞

dE

2π
Tr{i(1)α (E, ω)+ i(2)α (E, ω)+ i(3)α (E, ω)+ i(4)α (E, ω)} (2.21)

where

i(1)α (E, ω) = σ<α (E + h̄ω,E)[Gr(E + h̄ω)−Ga(E)] (2.22)

i(2)α (E, ω) = −i0αg
<(E + h̄ω,E) (2.23)

i(3)α (E, ω) = gr(E + h̄ω,E)6<
α (E)− ga(E + h̄ω,E)6<

α (E + h̄ω) (2.24)

i(4)α (E, ω) = σ rα(E + h̄ω,E)G<(E)−G<(E + h̄ω)σ a(E + h̄ω,E). (2.25)

Here the functions represented by capital letters are calculated in the steady-state limit and
the functions represented by lower-case letters are calculated to first order in the applied
ac potential.Gr , gr , Ga and ga are retarded and advanced Green’s functions at the site
representing the well. Similarly,6r

α, σ rα , 6a
α andσaα are retarded and advanced self-energies

at the well site due to coupling with contactα. The function6<
α (E) represents the injection

of electrons from contactα to the device at energyE. σ<α (E+ h̄ω,E) represents the time-
dependent injection from contactα to the device.

Using the expressions for dc [15, 17] and ac [12] self-energies, applying an ac potential
to contactβ yields

6r
α(E) = i0α(E) (2.26)

6<
α (E) = i0α(E)fα(E) (2.27)

σ rα(E + ω,E) =
6r
α(E)−6r

α(E + ω)
ω

δαβ (2.28)

σ<α (E + ω,E) =
6<
α (E)−6<

α (E + ω)
ω

δαβ (2.29)

where,α stands for contacts 1 and 2. In the expression for the retarded self-energy, we only
keep the imaginary part and neglect the real part which represents a shift in the resonant
energy [17].

In the dc limit the expression for0α(E) is [18]

0α(E) = w2
α

w
sin(kαa) for E > Vα (2.30)

0α(E) = 0 for E < Vα. (2.31)

Due to the absence of inter-mode scattering, the Green’s functions take the following
form using expressions forg andG from [12] and [15] respectively:

Gr(E) = 1

E − εr0+6(E) (2.32)

G<(E) = Gr(E)6<(E)Ga(E) (2.33)

gr(E + ω,E) = Gr(E + ω)σ r(E + ω,E)Gr(E) (2.34)

g<(E + ω,E) = Gr(E + ω)σ<(E + ω,E)Ga(E)+ gr(E + ω,E)6<(E)Ga(E)

+ Gr(E + ω)6<(E + ω)ga(E + ω,E)}. (2.35)

Using equations (2.26)–(2.29) and equations (2.32)–(2.35) in equation (2.21), the various
conductance matrix elements are calculated.
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3. The effect of charging on the ac current

Many references calculate the ac current by neglecting the effect of charging in the device [2–
7]. Specifically, reference [6] calculates the ac conduction currents flowing in the two
contacts by neglecting the effect of charging. It is then asserted that the total ac current is
equal to the average of the calculated conduction currents in the two contacts:

I (ω) = 1

2
(ic1(ω)− ic2(ω)) (3.1)

where,ic1(ω) and ic2(ω) are conduction currents calculated by neglecting charging.
To illustrate the importance of charging and to show that equation (3.1) is valid only

under special circumstances, we summarize our line of argument from the previous section.
The total current is the sum of the conduction and displacement currents:

I1(ω) = I c1(ω)+ I d1 (ω) and I2(ω) = I c2(ω)+ I d2 (ω).
The conduction currents here should be calculated by including the effect of the potential
in the well due to the time-varying charge density in the well (equation (2.3)). The dis-
placement currents are related to the time-dependent charge density and are given by

I d1 (ω) = iω
C1

C
q(ω) and I d2 (ω) = iω

C2

C
q(ω).

Now q(ω) in the above equations can be related to the conduction currents using the
continuity equation:

dq(t)

dt
= I c1(t)+ I c2(t) −→ q(ω) = I c1(ω)+ I c2(ω)

−iω
.

Using the last five equations, the total current can be expressed in terms of the conduction
currents (calculated by including the effect of charging in the well) as

I1(ω) = C2

C
Ic1(ω)−

C1

C
Ic2(ω) and I2(ω) = C1

C
Ic2(ω)−

C2

C
Ic1(ω).

From these equations, we see that equation (3.1) is an appropriate expression for the
conduction current only when bothC1 = C2 and the conduction currents are calculated
by neglecting the effect of charging.

In terms of our notation involving theg-matrix elements, equation (3.1) corresponds to
the following equation which is obtained by settingC = ∞ andC1 = C2 in equation (2.19):

G1(ω) = −G2(ω) = 1

2
{α1(g11− g21)+ α2(g22− g12)}. (3.2)

In section 4, we will numerically compare our results obtained from equation (2.19) to those
obtained from equation (3.2).

4. Numerical examples

In this section, we demonstrate the effect of charging on the ac conductance by comparing
the conductances calculated with and without charging. The values ofεr , 01 and02 are
chosen only to illustrate the discussion of section 3. Capacitances comparable to those used
here are possible only in devices with very narrow cross sections. The discussion of section
3 is however valid for broad-area resonant tunnelling devices as well, where the effect of
capacitances is equally important. In example 1, we start with a device which is symmetric
both in the barrier strengths and capacitances, at zero bias. Here the conductances calculated
from equations (2.19) and (3.2) are comparable. The effect of introducing an asymmetry in
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only the barriers (example 2) and the capacitances (example 3) of the structure in example
1 is then studied. In example 4, we discuss the ac conductance of a device in the presence
of an applied bias. In the numerical examples considered here, we have verified that the
low-frequency ac conductance is equal to the differential conductance of the dcI–V curve.

4.1. Example 1. A symmetric device at zero bias

The conductance versus frequency with and without charging (equations (2.19) and (3.2))
are found to be the same (the circles and crosses of figure 3). This is because in the special
limit of a symmetric device at zero bias, the ac charge density in the well is zero (This
follows from equations (2.10), (2.12), (2.13) and by noting that, for a symmetric structure
at zero bias,gij = gji .) As a result, both the ac potential and the displacement currents due
to the charge in the well are zero. The parameters chosen in this example are:Vdc = 0 V,
the chemical potential of contact 1 (µ1) and contact 2 (µ2) are chosen to be 10 meV,
εr = 10 meV,01 = 02 = 0.1 meV atE = εr , w = 2000 meV,w1 = w2 = w/16.7,
C1 = C2 = 2× 10−16 F andkT = 0.015 meV.

4.2. Example 2. The effect of asymmetry only in the barrier strength

The structure is identical to that in example 1 except that the barriers are asymmetric
(01 = 0.02 meV and02 = 0.1 meV). Then, the results predicted by equations (2.19) and
(3.2) are comparable (figure 2(a)). This can be explained as the total capacitance between
the device and the contacts is so large that the contribution to the ac potential in the well
due to theq(ω)/C term in equation (2.3) is negligible and thatC1 = C2 (see the discussion
in section 3).

When there is an asymmetry in the capacitances, charging should always be included
properly.

In the case of a structure with smaller capacitances (C1 = C2 = 1 × 10−16 F), the
results obtained from equations (2.19) and (3.2) are different (figure 2(b)). This is because
when the total capacitance is small, the potential of the well is altered significantly by the
charge in it. Then, the conduction currents calculated with and without charging included
are different. Note that equation (3.2) does not predict a change in the ac conductance
when the capacitances are changed without altering the ratiosα1 andα2 (see the circles and
crosses in figures 3(a) and 3(b)).

4.3. Example 3. The effect of asymmetry only in the capacitances

A DBRTS for which an asymmetry in the capacitances has been introduced in example 1
(C1 = 1× 10−15 F andC2 = 5× 10−15 F; the barriers are symmetric) is now considered.
HereC is large enough that theq/C term does not contribute substantially to the ac potential
in the well. The results obtained from equations (2.19) and (3.2) are different (figure 3)
because unequal displacement currents flow in the two contacts whenC1 6= C2. Then, a
simple averaging of the conduction currents as in equations (3.1) and (3.2) is no longer valid.
Note that the result for the ac conductance from equation (3.2) is identical in examples 1 and
3 because equation (3.2) does not correctly account for the asymmetry in the capacitances.

4.4. Example 4. ac conductance in the presence of an applied voltage

The dc bias is chosen to beV = 5 mV for the example in figure 4 and the self-consistently
determined position of the resonance is 10.5362 meV. The values of the various parameters
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Figure 2. Asymmetry just in the barrier strengths.(a) For a structure in which the only
asymmetry is in the barrier strength, neglecting charging is a good approximation when the
total capacitance between the well and the contacts is large. (b) For the same structure as in
(a), neglecting charging is not a reasonable approximation when the total capacitance between
the well and the contacts is small.
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Figure 3. Asymmetry just in the capacitances.

areC1 = C2 = 1× 10−15 F, w = 2000 meV,w1 = w/17.1, w2 = E/17.1, εr0 = 8.0 meV,
µ1 = 15 meV,µ2 = 10 meV andkT = 0.037 meV. From figure 4(a), we see that the
elements of theg-matrix, g12 andg22, are larger thang21 andg11 respectively. This feature
can be understood by noting that theg-matrix elements depend on the variation of the Fermi
function in the contacts and that this variation is more rapid around the resonant energy in
contact 2 than in contact 1 (equation (2.29)). Also, the real part ofg12 and the imaginary
part ofg22 exhibit a peak around a frequency of 0.5 meV because the resonant energy in the
well is about 0.5362 meV above the chemical potential of contact 2. We are in the regime
where theq/C component ofVw is negligible andC1 = C2. So the ac conductance here
agrees well with that obtained from equation (3.2). From equation (2.19), we find that

G1(ω) = 1

4
(g11+ g22− g12− g21).

This expression explains why the ac conductance looks similar tog22, the largest of the
g-matrix elements (figure 4(b)).

On the other hand, we know from section 3 that for a device whereC1 6= C2, the ac
conductance depends on the ratio ofC1 andC2. To illustrate this, we keep the values of the
resonant energy, applied bias and all other parameters the same as those used in figure 4(b),
except thatC2 = 4× C1 = 4× 10−15 F. From equation (2.19),

G1(ω) = 16

25
g11+ 1

25
g22− 4

25
(g12+ g21).

While theg-matrix elements remain the same as in figure 4, it is obvious from the expression
for G1(ω) that the conductance here is very different from that in the previous case
(figure 4(c)). In contrast, equation (3.2) predicts the same value for the ac conductance
in the two cases [19].
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Figure 4. ac conductance in the presence of an applied bias.(a) The conductance matrix
elements. (b) The total conductance looks similar to the largest conductance matrix elementg22

for this structure whenC1 = C2. (c) The total conductance for a device for whichC2 = 4C1

is, however, different from case (b).

4.5. Experiments

We now make some remarks on the experimental conditions necessary to observe the
differences in the ac conductance discussed. Example 1 corresponds to a symmetric GaAs–
AlGaAs structure with identical barriers on either side. A structure with equal capacitances
between the well and the two contacts but with different coupling strengths to the contacts
(example 2) can be constructed as follows. The coupling across the left-hand barrier can be
made weaker by increasing the barrier height. For AlGaAs, the dielectric constant does not
change significantly as the Al doping is increased in the left-hand barrier so as to increase
the barrier height. As a result, the barriers will have nearly the same widths and hence
capacitances. With regards to example 3, the capacitance across the second barrier can be
made five times larger by making the barrier about five times thinner than the first barrier.
To have similar transmission coefficients, the barrier height of the second barrier should
be correspondingly increased. These requirements can probably be met with the present
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advances in band-gap engineering and the exact values of the barrier heights and widths are
easy to determine. What is more difficult to achieve is the close proximity of the contacts
to the barriers that we have assumed in this paper. This assumption was however made
only to make the calculations simpler, and more realistic calculations that are beyond the
scope of the present work can be carried out.

5. Conclusions

In this paper, we have calculated the ac conductance of a DBRTS by including the effect
of imaging of charge from the well to the two contacts and present useful expressions to
calculate the ac conductance of a DBRTS. The formalism is applicable at high frequencies
and in the presence of finite dc biases. The self-consistent inclusion of the effect of imaging
of well charge is central to calculating total currents which are equal in the two contacts.
We find that including the effect of imaging of charge from the well to the contacts plays
a significant role in determining the ac conductance of a DBRTS. The time-varying charge
density in the well contributes to a flow of displacement currents equal to

C1

C

dq

dt
and

C2

C

dq

dt
in contacts 1 and 2 respectively (q(t) is the well charge). The strength of imaging which is
modelled by the total capacitanceC plays a role in determining the ac potential in the well
via the q(t)/C term. These features were illustrated using simple numerical examples in
section 4. Some previous papers calculated the ac conductance of a DBRTS by the following
procedure. The conduction currents across the two barriers were calculated by neglecting
the contribution to the ac potential in the well due to imaging of the time-dependent charge
density. Then the total ac current was taken to be the average of the conduction currents
flowing across the two barriers. In conclusion, we have shown that such a procedure for
calculating the ac conductance is correct only when both the capacitance is symmetrical
(C1 = C2) and the value ofC is large.
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